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ONE-DIMENSIONAL FINITE AMPLITUDE WAVE
PROPAGATION IN A COMPRESSIBLE ELASTIC

HALF-SPACE

JACOB ABOUDI and YAKO BENVENISTE

School of Engineering, Tel-Aviv University, Ramat-Aviv, Israel

Abstract~The problem of one-dimensional wave propagation of finite amplitude in a nonlinearly elastic com­
pressible half space is considered. The half space is subject on its surface to time dependent arbitrary normal and
shear loadings. The problem is solved by employing a certain stable numerical scheme which prevents almost all
the numerical oscillations which usually occur near shocks when a standard finite difference scheme is applied.

INTRODUCTION

THE propagation of finite amplitude wave in nonlinearly elastic materials has been in­
vestigated by several authors. For a review of the work done in the area and a list of
references the reader is referred to a paper by Collins [1] and a recent monograph by
Bland [2].

As it can be seen from the literature, most of the work done in the area consists either of
general treatments concerning the propagation of finite waves or of analytical solutions
which were obtained under rather restrictive conditions on the material constitution and
on the applied boundary inputs. On the other hand Fine and Shield [3J formulated perturba­
tion methods in order to handle general elastodynamic problems. This approach was then
elaborated by Davison [4] in the study of plane waves and he obtained approximate
solutions for the propagation of longitudinal and shear waves in an elastic half-space.

In this paper we deal with one-dimensional finite wave propagation in a nonlinearly
elastic half-space. A stable numerical method is given which enables us to deal with com­
pletely arbitrary initial and boundary-conditions and general elastic material constitution.
The numerical method employs a certain iterative procedure in order to remove the
oscillations which are typical in the numerical calculations behind strong gradients such
as shock waves which occur in nonlinear problems. Comparing the obtained numerical
results with some special cases in which some analytical conclusions could be drawn, it
will be shown that the numerical procedure has reliable accuracy. The special cases
illustrated are: (1) normal loading, (2) normal loading-unloading, (3) tangential loading,
(4) special loading generating a circularly polarized wave. Also to illustrate the fact that the
method can handle arbitrary boundary inputs, examples are given with combined normal
and tangential loading and loading-unloading. The constitutive equation used for these
illustrations is one proposed by Blatz and Ko [5] on the basis of experimental observations
as a model for polyurethane foam rubber and has been chosen solely as a matter of con­
veOlence.
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STATEMENT OF THE PROBLEM

Let us consider a homogeneous isotropic nonlinearly elastic material occupying an
infinite half-space Y ~ O. Let the position of the material particles be defined at all times
with respect to a fixed cartesian coordinate system (X, Y, Z) where X, Y, Z define the
position of the material particles at t = O. For times t ~ 0 let us treat a one-dimensional
deformation in the form

where

x = (x, y, z),

x = X+u(Y, t),

x = iX, Y, Z), u = (u, to, w).

(1)

(2)

and x, y, z are the position of the particles in their final configuration. As a stress measure
let us use the first Piola-Kirchhoff stress tensor T [6, p. 222]. T is related to the Cauchy
stress tensor (J by the relation [6, p. 222J :

T = JF- 1
(J (3)

where J = det F and F is the deformation gradient tensor with its components FiK defined
by:

ax.
FiK = ~.X' .

C K

(4)

The components of T are denoted by Tlk and the ones of (J by G"ik'

In terms of the first Piola-Kirchhoff stresses, in the absence of body forces the equations
of motion are given by [6, p. 224]

(5)

where Po is the density of the undeformed body.
In the present work all thermodynamic effects will be ignored. It is known that for a

non-heat conducting material, the change in entropy across a shock is of third order in the
displacement gradients [2]. Therefore by adopting the adiabatic approximation and treating
weak shocks only we can neglect the entropy changes everywhere at all times.

Disregarding all non-mechanical influences, for a general compressible elastic material
the Cauchy stresses are given in terms of the displacement gradients by the following
relation [7J :

(6)

where

(7)
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and is called the left Cauchy-Green tensor, I is the unit matrix, and Xo, XI' X-1 are general
functions of the principal invariants of B.

Using (6) and (3), the constitutive equation in terms of the first Piola-Kirchhoff stress
tensor can be easily obtained. Clearly using equations (1) in the constitutive equations
one can express the components of T in terms of the displacement gradients aula Y. Using
these expressions of Tyx ' Ty }', Tyz which are in terms of ou/ay, one obtains three coupled
non-linear equations of motion for u. For stresses prescribed on the surface of the half space
we also obtain non-linear expressions for boundary conditions in terms of ou/a Yon the
boundary.

As a specific constitutive equation we chose in this paper the one proposed by Blatz
and Ko [5J as a description of a 47 per cent by volume polyurethane foam rubber having a
shear modulus of 32lb/in2

• According to this constitutive equation the Cauchy stress is
given by

(8)

where p is the shear modulus. In case of infinitesimal deformations this equation reduces
to the linear stress~strain relation (Hooke's law) with Poisson's ratio v = 1/4. Using
equation (3) we get the expression for the first Piola-Kirchhoff stress

T = - pF - 1B- 1 + p(det F)F - 1.

With the deformation given by (1), the deformation gradient tensor F becomes:

(9)

all
0cY

ev
F= 0 1+- 0 , (10)ay

0
ow
cY

and for the invertibility of the motion (1) we need to satisfy

av
1+-~- > O.

oY

Using this deformation gradient in (9) we get for Tyx ' Ty }', Tyz ' the following expressions:

Tyx = p(:;) 1(1 +:;r
Ty

}' = -p{[1+(;;r+(:~rJ 1[1+;~r}+p
Tyz = P ~; 1(1 +:;r

Substituting the above expressions into the equations of motion (5) we obtain:

02U 02U
A oy 2 = (1/c6)atI

(11)

(12)



366

wherc

and

JACOB ABOUlJI and YAKO BENVENISTE

1/3s2 2 au I 3 0- ~Y 3s
c ,

'7' i

[ I + (:~r+ (:;)] / S4

chv I 3A= 2 cu 13 3- ~I s -2~.. ;35cY i
(lY .

0 aw I 3 1/3s2-2~ 3s
OY,

(13)

2 3f-l
Co =-

Po

In order that the disturbances propagate through the material as waves, conditions must
be met by the elements of the matrix A which guarantee that the system (12) be of hyperbolic
type. This is insured by the condition that the wave-speeds Ai of the system be real. Formal
computation of these characteristic wave-speeds gives them in the normalized form (with
respect to co):

(14)

where

au
U,y = cY'

It can be easily seen that for these A;'S to be real we need to have V,y > - I and

(15)

Note that V,y > - 1 is the already obtained condition for the invertibility of the motion.
In the special case of the linear problem we obtain

A.~ = 1.

For stresses prescribed on the boundary, according to (11) one gets three nonlinear alge­
braic equations, which must be solved for the displacement gradients in order to obtain
the proper boundary conditions for the system (12). This can be easily carried out by the
Newton-Raphson or other numerical procedures. Therefore without loss of generality
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let us assume that the displacement gradients on the boundary are given by

ou(O, t) = a(t)
oY

with a = (QI' Q2' Q 3). Similarly the initial conditions for the problem will be chosen as

(16)

(17)ou( Y, 0) = Il( Y)
OY

with ~ = (131,132,133)' ,
Equations (12), (16), (17) define completely the initial, boundary-value problem which

will be solved in the sequel.

NUMERICAL SOLUTION

In the following we propose a finite difference solution to the system (12) with the initial­
conditions (17) and boundary-conditions (16). By comparing the numerical results of some
special cases in which some analytical conclusions could be drawn it will be shown that the
numerical procedure has reliable accuracy.

By replacing the derivatives in (12) by central difference expressions which are correct
up to second order in the spatial and temporal increments ~ Y, ~t respectively, the dis­
placements at time t +~t are obtained in terms of their values at t and t - M as follows:

u(Y, t+~t) = k2 A[u(Y+~ Y, t)+u(Y-~Y, t)] +2(1 -k2 A)u(Y, t)-u(Y, t-M) (18)

where k = coM/~ Y.
The matrix A in (12) contains first order derivatives. These derivatives are now similarly

discretized in (18). According to (18) the displacements at the time level t+~t can be
calculated whenever the displacements at the previous two-time levels are known.

The three-time level finite difference system (18) is applied at Y ~ O. In order to impose
the boundary conditions (16) at Y = 0 an auxiliary point is added at Y = 0 - ~Y extending
out ofthe medium. The values ofthe displacements at this auxiliary point are calculated by
employing the boundary conditions (16) as follows:

u( - ~ Y, t) = u(O, t) - ~Ya(t). (19)

In order to find a stability criterion of the three-time level non-linear finite difference
system we assume local constancy of A and set according to von Neumann analysis of
stability:

u( Y, t) = Uo eiym.iY~n (20)

where Y = m ~Y, t = n M, yare wave numbers and Uo is a constant vector. Then (18)
reduces to:

(21)

with e = y~Y/2.

In (18) A is treated as being locally constant such that the analysis of von Neumann
affects only the second derivatives in (18). Equation (21) is satisfied ifthe determinant of its
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coefficients vanishes. This determinant can be written in the form:

(22)

with

(23)

where A?(i = 1,2,3) are the eigenvalues of A given by (14). Equation (23) can be rewritten
in the form:

(i = 1, 2, 3) (24)

where

For stability I~I s 1, and this is satisfied if IE;I S 1.
Therefore we obtain the following stability conditions:

(i = 1, 2, 3). (25)

In the special case of linear wave propagation (24) reduces to the well known condition

Conditions (24) are employed at every time step over all the range Y ~ 0 in order to
determine the appropriate time increment !it with which the computations proceed. The
finite difference scheme (18) is applied now with ,1 Y = l/100 where I is a reference measure
of length, and

(26)

with H(t) the Heaviside step function. The results for o1'/a Yat Y /1 = 0·05,0·1 are shown as
a function of cot/I in Fig. I(a). Severe oscillations exist which begin near the shock front as is
shown at the top of the Fig. 1. These oscillations are typical in the numerical calculations
behind strong gradients such as shock waves. Thus although the difference scheme is
quite satisfactory from the numerical point of view when it is applied to problems possessing
a smooth solution, nevertheless when applied to problems which have a discontinuous
solution it yields oscillations which are quite strong. These oscillations appear in the
neighborhood of discontinuities such as those representing shock waves. A similar situation
was encountered when dealing with elastic-plastic wave propagation [9J where such
oscillations appeared near the discontinuity in stresses at the elastic-plastic boundary.
These oscillations resulting from non-linear instabilities may in time distort the true
solution. There are several methods to overcome this phenomenon, such as the artificial
viscosity method [8J in which additional terms are added to the difference scheme so that
the region of the shock is smeared over several grid points. Thus the surface of discontinuity
is replaced by a thin transition layer in which quantities change rapidly but not discon­
tinuously. In [9J an iterative procedure was employed in order to remove these oscillations
and to handle the discontinuous stresses. This iterative difference scheme will be employed
now in order to remove the resulting oscillations near the discontinuous displacement
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FIG. 1. (a) Normal displacement gradients at stations Y/I = 0·05,0·1 caused by the prescribed input given
by (26) without applying the iterative procedure. (b) Same as (a) with the iterative procedure.

gradients of our problem. Let us define:

L[u(Y, t)] = k ZA[u(Y+L1Y, t)+u(Y-~Y,t)-2u(Y, t)]. (27)

(28)

Then our previous explicit scheme (18) can be rewritten as follows:

u( Y, t + ~t) = 2u( Y, t)- u( Y, t - ~t)+ L[u( Y, t)].

We consider now instead of (28) the followi~g explicit-implicit difference equation:

un(y, t+M) = 2u(Y, t)-u(Y, t-M)+{w3 L[un
-

1(y, t+M)] + wzL[u(Y, t)]

+w1L[u(Y, t-~t)]}/(Wl +Wz +W3 ) (29)

together with the boundary conditions

un(-~Y, t+~t) = un(O, t+~t)-~Y. a(t+M) (30)

where n is the number of the iteration n = 1,2, ... , N, Wi are weight numbers, and
uo( Y, t +~t) is defined to be equal to the displacement vector u( Y, t +M) given by equation
(28) which results from the previous difference scheme. Actually (28-30) can be regarded as
a predictor-corrector where (29-30) serves as the corrector which is applied N times each
of which uses results of the former step. This type ofdifference scheme is called by Abarbanel
and Goldberg [10] an "external" iterative scheme. In [10] computational comparisons for
the problem of one-dimensional time dependent cylindrical shock wave in a compressible
gas are given between the "external" and the so-called "internal" schemes, where the latter
was employed previously by Abarbanel and Zwas [11]. Actual computations which employ
the iterative method (28-30) show as in [9] that one iteration only (N = 1) removes all the
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oscillations near the shock and that applying two iterations (N = 2) yields results which
are as good as the results furnished by one iteration only. Indeed the results from two
iterations were indistinguishable from those obtained from one iteration only. In the sequel
all results are given with N = 1.

Let us carry out the stability analysis of the iteration procedure (28-29). With one
iteration (N = 1) we obtain:

u1(Y,t+dt) = {2+(02+203)L+03L2}[U(Y,t)]+{(01-03)L l}[u(Y,t-M)] (31)

where

(i = 1,2,3).

Applying again (20) for u1 we obtain instead of (21) the following system of equations:

{( - ~ + 2)1 - 4(02+ 203)k2A sin 2
G+ 1603e A2 sin4 e [I + 4(01- 03)k2A sin2 eHuo = O.

(32)

Equation (32) is satisfied if the determinant of its coefficients vanishes:

IA-A;II = 0

where

(33)

A = 1603~eA2sin2e+4k2sin2e[03-01-(02+203)]A (34)

and Af (i = 1,2,3) are the eigenvalues of the matrix A. According to the Cayley-Hamilton
theorem, the eigenvalues If are given in terms of Af by the same combination by which A
is expressed in terms of A in (34). Hence J.f are determined in terms of the known quantities
),,; given by (14). Accordingly we obtain similar to (24) the following conditions

~2-2E;~+Pi = 0 (35)

where

E; = 1+803Aik4 sin4e-2(02+203)Afk2 sin2 e}
(36)

Pi = 1- 4(03- OdAfk2 sin 2 e.

For stability I~I :s; 1, hence IEil :s; 1 and lFil :s; 1. These two conditions can be satisfied if:

0
3

2: 0 1
(coM/dy)2 :s; 0·5/(03-0d),,7

(coM/d y)2 :s; (203+02)/403)"f.

(37)

Note that by their definition and the inequality 03 2: 01 ,203 +02 > O. We choose the
following weight factors which yield the best results: WI = -1, w2 = W3 = 1. Hence
according to (37) the present stability conditions reduce to one half the previous conditions
(25) of the noniterative scheme as was similarly obtained in [9].

In Fig. l(b) the results for the normal displacement gradients with the same boundary
conditions (26), obtained this time by applying the iterative procedure (with one iteration)
are shown. It is seen that the iteration is very effective in removing the oscillations and does
not have the disadvantage of serious smearing of the displacement gradients discontinuity.
The features of this method of solution will be checked and discussed in the next section.
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RESULTS

Let us compare our numerical results with some analytical conclusions known for some
specific loadings. All the results were carried out with d Y = 1/100.

(a) Normal loading only
The boundary conditions in this case are given by (16) with

al(t) = a3(t) = 0 }

aAt) = f(t)

where

152 is a second order finite difference operator given by

J2 [q(t)J = [q(t)-2q(t-r)+q(t-2r)Jlr 2

where r is a time constant.

(39)

(40)

1.0

0.5

(a)

"-------- y

(tI)

SHOCK

"--------y

(e)

(42)

FIG. 2. (a) The time inputs f(t), g(t) given by (39) and (52) respectively. (b) Simple wave with spreading
characteristics. (c) Converging characteristics and formation of the shock.

The function f(t) rises from zero at t = 0, up to 1·0 at t = 2r see Fig. 2(a). The initial
conditions (17) will be taken as p = O. In the present case the differential equation governing
the motion is given by

a2
v I a2

v
C~ay2 (1+s)4=at2 ' (41)

The analytical solution of the above equation in the absence of shocks is given by [12J :

:;(l~ t) = f[t- (YIC(:~)]
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(
01') 2

C oY = co/(l +05) . (43)

It is known that [12J according to the form of the function fit), the solution is either a
simple wave with spreading straight characteristics or with converging straight character­
istics at the intersection of which a shock forms. The solution (42) is valid for all Y z 0
and ct. = t - YIc z 0 in the first case, and only up to shocks in the second case. If we call
the straight characteristics issuing from Y = 0 in Fig. 2(b), the rx characteristics, then the
condition for no shocks can be written as [12J :

oc
~< 0.
orx

(44)

In other words, this is the condition for the spreading out of the characteristics. For our
material, according to (43)

c = co/(1 +f(rx))2

(1c
oct. = - [2co.f'(rx)J/[1 +f(rx)P

(45)

Therefore for f'(rx) > 0 the characteristics will spread out and for f'(rx) < 0 they will
converge. More explicitly, for positive normal loading no shock will form and for negative
normal loading a shock will form (Fig. 2c). In order to use the analytical solution for
t z 0, rx z 0 we subject the half space to the monotonically non-decreasing function fit)
given in equation (39). The numerical and analytical results are compared in Fig. 3(a)
together with the solution of the linear case. The rise time chosen is 2,coll = 0-4. Note that
the nonlinear effect exhibits itself as a spreading of the pulse over a longer time interval.
The maximum deviation of the numerical results from the analytical solution over the
whole interval is found to be about 3 per cent. In the linear case the pulse propagates with
no change in shape. The convergence of the numerical results to the expected constant
value serves also as a check for the accuracy of the numerical procedure.

(b) Normal loading-unloading

Now we subject the surface of the half space to a monotonically increasing and then
decreasing normal input h(rx) in order to observe the formation of a shock. The point in the
Y, t plane at which the shock forms initially can be determined analytically and this location
can be compared with the one obtained from the numerical procedure.

In order to find this location we observe that the straight rx characteristics form a
family of lines in the Y, t plane with the parameter rx. We are interested in finding the en­
velope of this family and its cusp at which the shock forms [13]. The equation of an rx
characteristic is given by (44) with c = c(rx). The envelope of this family of lines is para­
metrically given by

t = rx+ [C(rx)I:~J

1
0C

y = [c(rxW -::,-.
orx

(46)



One-dimensional finite amplitude wave propagation in a compressible elastic half-space 373

I
1.4

I
1.2

I
1.0

1.0
(a)

1.0 Y/I=0.2

O. 0.8

0.6 06·
>- >-,: ,:

104 I 04

0.2 0.2

0.0 00
I I I I I I I I I I I

0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
0.0 - CollL 0.0

\
-CoIIL

-0.1 r-- OJ -Olf- '"'" II) ci
>- ci ci '? >- Y/l =0.2 " Vl =0.5,: " . ,: ;SI ~ ~ ~ , "'-
-0.2r-- -0.2f-

-0.3"- -0.3"­

(b)

\'--'-----'------

FIG. 3. (a) Analytical and numerical solutions for the normal displacement gradient at stations Y/l = 0·1,
0·2 caused by f(t). The corresponding linear solution is also shown. (b) Normal displacement gradients

caused by -0·3H(t) and -0·3f(t) respectively.

The cusp is located at the value of ct which makes t a minimum i.e.

and ct is obtained from

(47)

Using

c = co/[l+h(ctW,

we obtain

which gives

(48)

Knowing the function h we can determine on which characteristic the cusp is located, i.e.
where the shock forms. As an example let us choose the input function given by:
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Substituting in (48) we get for S(: coCl./1 = 0·255 sin - 1(0·8) = 0·565. Hence according to (46)
we obtain

Y/I = 0·081

cot/I = 0·782.

Indeed it can be seen from the numerical results in Fig. 1(b) that at Y/l = 0·05 the shock has
not formed yet, whereas at Y/l = 0·1 the presence of the shock is observed.

Its arrival time at Y /1 = 0·1 is cot/I = 0·83. Thus the numerical results are in accordance
with the values obtained above analytically. In this case we note the spreading of the pulse
until the peak due to loading, and its narrowing after the peak due to unloading. The
displacement gradient converges to the constant final value zero as expected.

(c) Normal negative loading

As a third example with normal loading only, we choose

h(t} -0·3 H(t).

It is known from [2J that this disturbance propagates as a shock with a velocity

V = [(Jl/Pop)(I-I/(l +p)3J±. (49)

Where p is the jump in ov/o Yacross the shock. The shock is expected to propagate without
a change in its strength with the above velocity. For our specific input of p = -0·3 we get
V = 1-46co. The numerical method furnishes quite exactly these analytical results (see
Fig. 3(a». Indeed it gives 0·3 as the correct magnitude of the jump across the shock and
confirms that the strength of the shock remains constant as it propagates yielding the value
1·47co for the propagation velocity.

As another example of normal loading only, we subject the surface to a continuously
rising negative loading h(t) - 0·3 f(t) with 2rco/1 = 0·25 instead of a step input. Here,
contrary to the positive loading case the characteristics converge instead of spreading out
and a shock is formed. This fact is again clearly seen in the numerical results (Fig. 3(b». In
this figure we show the disturbance at two observation points Y/1 = 0·2,0·3 before the
shock formation and at Y/l 0·5 with the presence of the shock. Again the convergence of
the numerical results to the expected constant final values is observed.

(d) Shear loading
Here we subject the surface of the half-space to the following boundary conditions

a2 = Q3 = 0,

and zero initial conditions. In [14J it has been proved that a centered simple wave in iJu/oY
and a shock in ov/oYis obtained. The velocity of the shock is again given by (49) where p
is the jump across the shock and is negative in this specific case [14]. The solution in the
Y, t plane is represented in Fig. 4(a). The numerical solution at stations Y/l = 0·1,0·2,0·3
is shown in Fig. 4(b) with the value of the jump p = 0·23. According to (49) we get for the
velocity of the shock V = 1·31co.

Note that we get the same shock strength at different stations as predicted in [14J. The
shear disturbance is smoothened out as expected and the displacement gradients converge
to their expected final values. In this case we note the occurrance of the longitudinal
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FIG. 4. (a) Characteristics in the Y, t plane for the shear step loading case. (b) Tangential and normal
displacement gradients caused by shear step loading.

disturbance which does not occur in the corresponding problem of the linear theory. This
disturbance is of smaller order as compared with the corresponding tangential displacement
gradient. On the curves of Fig. 4(b), the regions ofFig. 4(a) are indicated for a better depiction
of the solution. Note that the width of region II increases as the distance Yincreases, a fact
which is easily observed in Fig. 4(a).

(e) Circularly polarized wave

Bland [2] has shown that there are six simple waves that propagate in a given direction
in a nonlinear compressible elastic solid, three in each sense. For an isotropic material,
one of these three is circularly polarized, the other two plane polarized. To conclude our
checks we produce the circularly polarized wave by applying the proper inputs on the
surface of the half space.

Proceeding in the same way as in [2] for our specific material we find that the circularly
polarized wave propagates with a velocity given by

C 1 = (IlJPoyt/(1 +S)2.

Besides, in the simple wave the following equalities are satisfied.

(50)

(au) 2 (ow) 2

oY + oY = k2 •
(51)

Where k1 and k2 are constants. Hence the velocity (50) is constant and all the characteristics
have the same slope. The value of the constants are determined from the boundary charac­
teristic, i.e. from the initial values in our case. Then the boundary inputs also must satisfy
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the conditions in (51). Specifically we choose the initial conditions Pl = {32 = 0, fl J( Y) = I,
and the boundary conditions

a I (t) = O·s.{(t), a2(t) = 0

aJ(t) = [1 - ai(t)Jt

with 2cor/l = 0-4.
With the above values the velocity (50) becomes c\ = (/J./Poyl:. Thus in the solution we

expect av/a Y to remain zero and the disturbances in ou/a Yand ow/c Yto propagate with
the above velocity and with no change in shape in such a way that the sum of their squares
is equal to one. These results are completely achieved by the obtained numerical solution
as shown in Fig. 5. In this figure the normal displacement gradient is not shown since it is
effectively zero as expected.
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FlG. 5. Tangential displacement gradients in the circularly polarized wave.

In addition to the above checks we produce two general cases in which the surface of
the half space is subject to (a) combined normal and tangential loading, (b) combined
normal and tangential loading-unloading. The displacement gradients in this case are given
in Figs. 6 and 7. In Fig. 6 we choose 2cor/l = 0·2,0·15,0·1 as the rise times of the applied
inputs f(t) defined by (39) in the X, Y, and Z directions respectively. In Fig. 7 we choose the
loading-unloading function g(t) defined by:

g(t) = <5 2[t2H(t)/2J - <5 2[(t - 2r)2H(t - 2r)/2J (52)

The function g(t) rises from 0 at t = 0 up to 1·0 at t = 2r and then drops back to 0 at t = 4r
(see Fig. 2(a)).

We choose the time durations 4cor/l = 0·2,0·15,0·1 in the X, Y, and Z directions
respectively. Here again the displacement gradients converge to the expected final constant
values after the proper time has elapsed.
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FIG. 6. Normal and tangential displacement gradients caused by combined normal and tangential
loadings.
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A6cTpaKT~l1cCJIe,l:\yeTcJI 3a,l:\a'la pacnpOCTpaHeHHJI O,l:\HOMepHoK BOJIHbl KOHe'lHOH aMnJIHTY,l:\bI B
HeJIHHeHHO ynpyroM ClICHMaeMOM nOJIynpocTpaHCTBe. DOJIynpocTpaHcTBO nO,l:\BeplICeHO Ha ero nOBepx­
HOCTH ,l:\eifCT"bHIO 3aBHClimeM OT BpeMeHH, npOH3BOJIbHbIX Harpy30K HOpMaJIbHOH H C,I:\BHra. 3a,l:\a'la
pemaeTCli nyTeM llpHMeHeHHJI HeKoTopoH YCTOH'lHBOH '1HCJIeHHOH cxeMbl KOTopali npe,l:\OTBpamaeT nO'ITH
seeM '1HCJIeHHbIM KOJIe6aHHlIM, KOTopble 06b1'lHO nOpHCXO,l:\lIT 6JIH3H y,l:\apOB, ,l:\Jlll cJIy'lali CTaH,I:\apTHOM
cxeMbI B KOHe'lHbIX pa3HocTilX.


